

 Navigation

 	
 index

 	
 modules |

 	Exaile 3.4.1 documentation

Exaile documentation

Exaile is a music player with a simple interface and powerful music
management capabilities. Features include automatic fetching of album art,
lyrics fetching, streaming internet radio, tabbed playlists, smart
playlists with extensive filtering/search capabilities, and much more.

Exaile is written using python and GTK+ and is easily extensible via
plugins. There are over 50 plugins distributed with Exaile that include
advanced track tagging, last.fm scrobbling, support for portable media
players, podcasts, internet radio such as icecast and Soma.FM,
ReplayGain, output via a secondary output device (great for DJs!), and
much more.

	Exaile Users Guide

	Exaile Developer Documentation

	Search Page

 Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Exaile 3.4.1 documentation

 Python Module Index

 x

 			

 		
 x	

 	[image: -]
 	
 xl	

 	
 	
 xl.collection	

 	
 	
 xl.common	

 	
 	
 xl.covers	

 	
 	
 xl.event	

 	
 	
 xl.formatter	

 	
 	
 xl.metadata	

 	
 	
 xl.player	

 	
 	
 xl.playlist	

 	
 	
 xl.providers	

 	
 	
 xl.settings	

 	
 	
 xl.trax	

 	
 	
 xl.xldbus	

 	[image: -]
 	
 xlgui	

 	
 	
 xlgui.icons	

 Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Exaile 3.4.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	

 	add() (xl.collection.Library method)

 	

 	(xl.trax.TrackDB method)

 	add_callback() (in module xl.event)

 	add_horizontal() (xlgui.icons.ExtendedPixbuf method)

 	add_icon_name_from_directory() (xlgui.icons.IconManager method)

 	add_icon_name_from_file() (xlgui.icons.IconManager method)

 	add_icon_name_from_pixbuf() (xlgui.icons.IconManager method)

 	add_library() (xl.collection.Collection method)

 	add_stock_from_directory() (xlgui.icons.IconManager method)

 	add_stock_from_file() (xlgui.icons.IconManager method)

 	

 	add_stock_from_files() (xlgui.icons.IconManager method)

 	add_stock_from_pixbuf() (xlgui.icons.IconManager method)

 	add_stock_from_pixbufs() (xlgui.icons.IconManager method)

 	add_tracks() (xl.trax.TrackDB method)

 	add_vertical() (xlgui.icons.ExtendedPixbuf method)

 	append() (xl.playlist.Playlist method)

 	ArtistTagFormatter (class in xl.formatter)

 	ASXConverter (class in xl.playlist)

B

 	

 	BaseFormat (class in xl.metadata)

C

 	

 	cached() (in module xl.common)

 	classproperty() (in module xl.common)

 	clear() (xl.playlist.Playlist method)

 	clear_shuffle_history() (xl.playlist.Playlist method)

 	close() (xl.collection.Collection method)

 	Collection (class in xl.collection)

 	CollectionScanThread (class in xl.collection)

 	

 	composite_simple() (xlgui.icons.ExtendedPixbuf method)

 	count() (xl.playlist.Playlist method)

 	CoverManager (class in xl.covers)

 	CoverSearchMethod (class in xl.covers)

 	current_playlist (xl.player.queue.PlayQueue attribute)

 	current_position (xl.playlist.Playlist attribute)

D

 	

 	days (xl.common.TimeSpan attribute)

 	DbusManager (class in xl.xldbus)

 	delete() (xl.collection.Library method)

 	

 	dirty (xl.playlist.Playlist attribute)

 	DiscNumberTagFormatter (class in xl.formatter)

 	dynamic_mode (xl.playlist.Playlist attribute)

E

 	

 	exists() (xl.trax.Track method)

 	export_to_file() (xl.playlist.FormatConverter method)

 	extend() (xl.playlist.Playlist method)

 	

 	extended_pixbuf_new_from_file() (in module xlgui.icons)

 	ExtendedPixbuf (class in xlgui.icons)

 	extract() (xl.formatter.Formatter method)

F

 	

 	find_covers() (xl.covers.CoverManager method)

 	

 	(xl.covers.CoverSearchMethod method)

 	fixed (xl.covers.CoverSearchMethod attribute)

 	fixed_priority (xl.covers.CoverSearchMethod attribute)

 	format() (xl.formatter.ArtistTagFormatter method)

 	

 	(xl.formatter.Formatter method)

 	(xl.formatter.LengthTagFormatter method)

 	(xl.formatter.ProgressTextFormatter method)

 	(xl.formatter.TagFormatter method)

 	(xl.formatter.TrackFormatter method)

 	format_value() (xl.formatter.LengthTagFormatter static method)

 	

 	FormatConverter (class in xl.playlist)

 	formats (in module xl.metadata)

 	Formatter (class in xl.formatter)

 	freeze_libraries() (xl.collection.Collection method)

G

 	

 	get() (in module xl.providers)

 	get_collection_by_loc() (in module xl.collection)

 	get_cover() (xl.covers.CoverManager method)

 	get_cover_data() (xl.covers.CoverManager method)

 	

 	(xl.covers.CoverSearchMethod method)

 	get_current() (xl.player.queue.PlayQueue method)

 	

 	(xl.playlist.Playlist method)

 	get_current_position() (xl.playlist.Playlist method)

 	get_db_string() (xl.covers.CoverManager method)

 	get_default_cover() (xl.covers.CoverManager method)

 	get_dynamic_mode() (xl.playlist.Playlist method)

 	get_format() (in module xl.metadata)

 	get_libraries() (xl.collection.Collection method)

 	get_loc_for_io() (xl.trax.Track method)

 	get_location() (xl.collection.Library method)

 	get_monitored() (xl.collection.Library method)

 	get_next() (xl.player.queue.PlayQueue method)

 	get_option() (in module xl.settings)

 	

 	(xl.settings.SettingsManager method)

 	get_position() (xl.player._base.ExailePlayer method)

 	get_progress() (xl.player._base.ExailePlayer method)

 	

 	get_provider() (in module xl.providers)

 	get_rating() (xl.trax.Track method)

 	get_rating_from_tracks() (in module xl.trax)

 	get_repeat_mode() (xl.playlist.Playlist method)

 	get_rescan_interval() (xl.collection.Library method)

 	get_shuffle_history() (xl.playlist.Playlist method)

 	get_shuffle_mode() (xl.playlist.Playlist method)

 	get_spat_position() (xl.playlist.Playlist method)

 	get_state() (xl.player._base.ExailePlayer method)

 	get_tag_display() (xl.trax.Track method)

 	get_tag_raw() (xl.trax.Track method)

 	get_tag_sort() (xl.trax.Track method)

 	get_time() (xl.player._base.ExailePlayer method)

 	get_tracks_from_uri() (in module xl.trax)

 	get_type() (xl.trax.Track method)

 	get_uris_from_tracks() (in module xl.trax)

 	get_volume() (xl.player._base.ExailePlayer method)

H

 	

 	has_option() (xl.settings.SettingsManager method)

 	

 	hours (xl.common.TimeSpan attribute)

I

 	

 	IconManager (class in xlgui.icons)

 	import_from_file() (xl.playlist.FormatConverter method)

 	index() (xl.playlist.Playlist method)

 	is_paused() (xl.player._base.ExailePlayer method)

 	

 	is_play_enabled() (xl.player.queue.PlayQueue method)

 	is_playing() (xl.player._base.ExailePlayer method)

 	is_stopped() (xl.player._base.ExailePlayer method)

 	is_valid_track() (in module xl.trax)

L

 	

 	LastPlayedTagFormatter (class in xl.formatter)

 	LengthTagFormatter (class in xl.formatter)

 	Library (class in xl.collection)

 	LibraryMonitor (class in xl.collection)

 	LimitedCache (class in xl.common)

 	list_tags() (xl.trax.Track method)

 	

 	load() (xl.covers.CoverManager method)

 	load_from_location() (xl.playlist.Playlist method)

 	

 	(xl.trax.TrackDB method)

 	local_file_name() (xl.trax.Track method)

 	LocalFileCoverFetcher (class in xl.covers)

 	log_event() (in module xl.event)

 	log_exception() (in module xl.common)

M

 	

 	M3UConverter (class in xl.playlist)

 	MANAGER (in module xl.covers)

 	

 	(in module xl.providers)

 	(in module xl.settings)

 	MetadataList (class in xl.common)

 	minutes (xl.common.TimeSpan attribute)

 	

 	monitored (xl.collection.Library attribute)

 	move() (xlgui.icons.ExtendedPixbuf method)

 	multiply_horizontal() (xlgui.icons.ExtendedPixbuf method)

 	multiply_vertical() (xlgui.icons.ExtendedPixbuf method)

N

 	

 	name (xl.covers.CoverSearchMethod attribute)

 	

 	(xl.playlist.Playlist attribute)

 	name_from_path() (xl.playlist.FormatConverter method)

 	next() (xl.player.queue.PlayQueue method)

 	

 	(xl.playlist.Playlist method)

 	

 	NotReadable

 	NotWritable

O

 	

 	on_scan_progress_update() (xl.collection.CollectionScanThread method)

 	open_file() (in module xl.common)

 	

 	open_file_directory() (in module xl.common)

 	order_poset() (in module xl.common)

P

 	

 	ParameterTemplate (class in xl.formatter)

 	pause() (xl.player._base.ExailePlayer method)

 	pixbuf_from_data() (xlgui.icons.IconManager method)

 	pixbuf_from_icon_name() (xlgui.icons.IconManager method)

 	pixbuf_from_rating() (xlgui.icons.IconManager method)

 	pixbuf_from_stock() (xlgui.icons.IconManager method)

 	pixbuf_from_text() (xlgui.icons.IconManager method)

 	play() (xl.player._base.ExailePlayer method)

 	

 	(xl.player.queue.PlayQueue method)

 	PLAYER (in module xl.player)

 	Playlist (class in xl.playlist)

 	

 	PlayQueue (class in xl.player.queue)

 	PLSConverter (class in xl.playlist)

 	pop() (xl.playlist.Playlist method)

 	PosetItem (class in xl.common)

 	prev() (xl.player.queue.PlayQueue method)

 	

 	(xl.playlist.Playlist method)

 	profileit() (in module xl.common)

 	ProgressTextFormatter (class in xl.formatter)

 	ProgressThread (class in xl.common)

 	ProviderHandler (class in xl.providers)

 	ProviderManager (class in xl.providers)

Q

 	

 	QUEUE (in module xl.player)

 	

 	queue_length() (xl.player.queue.PlayQueue method)

R

 	

 	randomize() (xl.playlist.Playlist method)

 	RatingTagFormatter (class in xl.formatter)

 	read_all() (xl.metadata.BaseFormat method)

 	read_tags() (xl.metadata.BaseFormat method)

 	

 	(xl.trax.Track method)

 	register() (in module xl.providers)

 	remove() (xl.trax.TrackDB method)

 	remove_callback() (in module xl.event)

 	remove_cover() (xl.covers.CoverManager method)

 	

 	remove_library() (xl.collection.Collection method)

 	remove_option() (xl.settings.SettingsManager method)

 	remove_tracks() (xl.trax.TrackDB method)

 	repeat_mode (xl.playlist.Playlist attribute)

 	rescan() (xl.collection.Library method)

 	rescan_libraries() (xl.collection.Collection method)

 	run() (xl.collection.CollectionScanThread method)

 	

 	(xl.common.ProgressThread method)

S

 	

 	save() (xl.covers.CoverManager method)

 	

 	(xl.settings.SettingsManager method)

 	save_to_location() (xl.playlist.Playlist method)

 	

 	(xl.trax.TrackDB method)

 	search_tracks() (in module xl.trax)

 	search_tracks_from_string() (in module xl.trax)

 	seconds (xl.common.TimeSpan attribute)

 	seek() (xl.player._base.ExailePlayer method)

 	serialize_libraries() (xl.collection.Collection method)

 	set_cover() (xl.covers.CoverManager method)

 	set_current_playlist() (xl.player.queue.PlayQueue method)

 	set_current_position() (xl.playlist.Playlist method)

 	set_dynamic_mode() (xl.playlist.Playlist method)

 	set_loc() (xl.trax.Track method)

 	set_location() (xl.collection.Library method)

 	set_monitored() (xl.collection.Library method)

 	set_option() (in module xl.settings)

 	

 	(xl.settings.SettingsManager method)

 	set_preferred_order() (xl.covers.CoverManager method)

 	set_progress() (xl.player._base.ExailePlayer method)

 	set_rating() (xl.trax.Track method)

 	

 	set_repeat_mode() (xl.playlist.Playlist method)

 	set_rescan_interval() (xl.collection.Library method)

 	set_shuffle_mode() (xl.playlist.Playlist method)

 	set_spat_position() (xl.playlist.Playlist method)

 	set_tag_raw() (xl.trax.Track method)

 	set_volume() (xl.player._base.ExailePlayer method)

 	SettingsManager (class in xl.settings)

 	shuffle_mode (xl.playlist.Playlist attribute)

 	shuffle_mode_names (xl.playlist.Playlist attribute)

 	shuffle_modes (xl.playlist.Playlist attribute)

 	sort() (xl.playlist.Playlist method)

 	sort_result_tracks() (in module xl.trax)

 	sort_tracks() (in module xl.trax)

 	spat_position (xl.playlist.Playlist attribute)

 	stop() (xl.collection.CollectionScanThread method)

 	

 	(xl.common.ProgressThread method)

 	(xl.player._base.ExailePlayer method)

 	stop_scan() (xl.collection.Collection method)

 	synchronized() (in module xl.common)

T

 	

 	TagCoverFetcher (class in xl.covers)

 	TagFormatter (class in xl.formatter)

 	thaw_libraries() (xl.collection.Collection method)

 	threaded() (in module xl.common)

 	TimeSpan (class in xl.common)

 	to_unicode() (in module xl.common)

 	

 	toggle_pause() (xl.player._base.ExailePlayer method)

 	Track (class in xl.trax)

 	TrackDB (class in xl.trax)

 	TrackFormatter (class in xl.formatter)

 	TrackNumberTagFormatter (class in xl.formatter)

 	TracksMatcher (class in xl.trax)

U

 	

 	unpause() (xl.player._base.ExailePlayer method)

 	unregister() (in module xl.providers)

 	unserialize_libraries() (xl.collection.Collection method)

 	

 	update_track() (xl.collection.Library method)

 	use_cache (xl.covers.CoverSearchMethod attribute)

V

 	

 	VersionError

W

 	

 	walk() (in module xl.common)

 	walk_directories() (in module xl.common)

 	

 	write_tags() (xl.metadata.BaseFormat method)

 	

 	(xl.trax.Track method)

X

 	

 	xl.collection (module)

 	xl.common (module)

 	xl.covers (module)

 	xl.event (module)

 	xl.formatter (module)

 	xl.metadata (module)

 	xl.player (module)

 	xl.playlist (module)

 	

 	xl.providers (module)

 	xl.settings (module)

 	xl.trax (module)

 	xl.xldbus (module)

 	xlgui.icons (module)

 	xlgui.icons.MANAGER (in module xlgui.icons)

 	XSPFConverter (class in xl.playlist)

 Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

 xl/settings.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Settings

Central storage of application and user settings

		
xl.settings.MANAGER

		Singleton instance of the SettingsManager

		
xl.settings.get_option(name, default)

		

		
xl.settings.set_option(self, option, value)

		Set an option (in section/key syntax) to the specified value

		Parameters:		
		option (string) – the full path to an option

		value (any) – the value the option should be assigned

		
class xl.settings.SettingsManager(location=None, default_location=None)

		Bases: ConfigParser.RawConfigParser

Manages Exaile’s settings

Sets up the settings manager. Expects a location
to a file where settings will be stored. Also sets up
periodic saves to disk.

		Parameters:		
		location (str or None) – the location to save the settings to,
settings will never be stored if this is None

		default_location – the default location to
initialize settings from

		
get_option(option, default=None)

		Get the value of an option (in section/key syntax),
returning default if the key does not exist yet

		Parameters:		
		option (string) – the full path to an option

		default (any) – a default value to use as fallback

		Returns:		the option value or default

		Return type:		any

		
has_option(option)

		Returns information about the existence
of a particular option

		Parameters:		option (string) – the option path

		Returns:		whether the option exists or not

		Return type:		bool

		
remove_option(option)

		Removes an option (in section/key syntax),
thus will not be saved anymore

		Parameters:		option (string) – the option path

		
save()

		Save the settings to disk

		
set_option(option, value)

		Set an option (in section/key syntax) to the specified value

		Parameters:		
		option (string) – the full path to an option

		value (any) – the value the option should be assigned

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

xl/event.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Events

Provides a signals-like system for sending and listening for ‘events’

Events are kind of like signals, except they may be listened for on a
global scale, rather than connected on a per-object basis like signals
are. This means that ANY object can emit ANY event, and these events may
be listened for by ANY object.

Events should be emitted AFTER the given event has taken place. Often the
most appropriate spot is immediately before a return statement.

		
xl.event.log_event(type, obj, data)

		Sends an event.

		Parameters:		
		type (string) – the type or name of the event.

		obj (object) – the object sending the event.

		data (object) – some data about the event, None if not required

		
xl.event.add_callback(function, type=None, obj=None, *args, **kwargs)

		Adds a callback to an event

You should ALWAYS specify one of the two options on what to listen
for. While not forbidden to listen to all events, doing so will
cause your callback to be called very frequently, and possibly may
cause slowness within the player itself.

		Parameters:		
		function (callable) – the function to call when the event happens

		type (string) – the type or name of the event to listen for, eg
tracks_added, cover_changed. Defaults to any event if
not specified.

		obj (object) – the object to listen to events from, e.g. exaile.collection
or xl.covers.MANAGER. Defaults to any object if not
specified.

Any additional parameters will be passed to the callback.

		Returns:		a convenience function that you can call to remove the callback.

		
xl.event.remove_callback(function, type=None, obj=None)

		Removes a callback

The parameters passed should match those that were passed when adding
the callback

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

xl/providers.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Providers & Services

A generic framework for service providers, recommended to be used
whenever there are multiple ways of accomplishing a task or multiple
sources can offer the required data.

		
xl.providers.MANAGER

		Singleton instance of the ProviderManager

		
xl.providers.register(self, servicename, provider, target=None)

		Registers a provider for a service. The provider object is used
by consumers of the service.

Services can be targeted for a specific use. For example, if you
have a widget that uses a service ‘foo’, if your object can perform
a service only for a specific type of widget, then target would be
set to the widget type.

If you had a service that could perform ‘foo’ for all widgets, then
target would be set to None, and all widgets could use your service.

It is intended that most services should set target to None, with
some narrow exceptions.

		Parameters:		
		servicename (string) – the name of the service [string]

		provider (object) – the object that is the provider [object]

		target (object) – a specific target for the service [object]

		
xl.providers.unregister(self, servicename, provider, target=None)

		Unregisters a provider.

		Parameters:		
		servicename (string) – the name of the service

		provider (object) – the provider to be removed

		target (object) – a specific target for the service [object]

		
xl.providers.get(self, servicename, target=None)

		Returns a list of providers for the specified servicename.

This will return providers targeted for a specific target AND
providers not targeted towards any particular target.

		Parameters:		
		servicename (string) – the service name to get providers for

		target (object) – the target of the service

		Returns:		list of providers

		Return type:		list of objects

		
xl.providers.get_provider(self, servicename, providername, target=None)

		Returns a single identified provider

This will return a provider either targeted for the specific
target or a provider not targeted towards any particular target.

		Parameters:		
		servicename (string) – The service name to get the provider for

		providername (string) – The provider name to identify the provider

		target (object) – the target of the service

		Returns:		a provider or None

		Return type:		object

		
class xl.providers.ProviderManager

		The overall manager for services and providers for them

		
class xl.providers.ProviderHandler(servicename, target=None, simple_init=False)

		Base class to handle providers
for one specific service including
notification about (un)registration

Target is the object that the service is being performed for.
Often, if the service is truly global and it doesn’t make sense
to target a service at a particular consumer, it can be None.

		Parameters:		
		servicename (string) – the name of the service to handle

		target (string) – the target for a provided service. Generally,
this will be the object that uses the service

		simple_init – call on_provider_added for every element
already registered on instantiation.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/up.png

xl/collection.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Collection

Classes representing collections and libraries

A collection is a database of tracks. It is based on TrackDB but has
the ability to be linked with libraries.

A library finds tracks in a specified directory and adds them to an associated
collection.

Collections

		
xl.collection.get_collection_by_loc(loc)

		gets the collection by a location.

		Parameters:		loc – Location of the collection

		Returns:		collection at location or None

		Return type:		Collection

		
class xl.collection.Collection(name, location=None, pickle_attrs=[])

		Manages a persistent track database.

		Parameters:		args – see xl.trax.trackdb.TrackDB

Simple usage:

>>> from xl.collection import *
>>> from xl.trax import search
>>> collection = Collection("Test Collection")
>>> collection.add_library(Library("./tests/data"))
>>> collection.rescan_libraries()
>>> tracks = [i.track for i in search.search_tracks_from_string(
... collection, ('artist==TestArtist'))]
>>> print len(tracks)
5
>>>

		
add_library(library)

		Add this library to the collection

		Parameters:		library (Library) – the library to add

		
close()

		close the collection. does any work like saving to disk,
closing network connections, etc.

		
freeze_libraries()

		Prevents “libraries_modified” events from being sent from individual
add and remove library calls.

Call this before making bulk changes to the libraries. Call
thaw_libraries when you are done; this sends a single event if the
libraries were modified.

		
get_libraries()

		Gets a list of all the Libraries associated with this
Collection

		Return type:		list of Library

		
remove_library(library)

		Remove a library from the collection

		Parameters:		library (Library) – the library to remove

		
rescan_libraries(startup_only=False)

		Rescans all libraries associated with this Collection

		
serialize_libraries()

		Save information about libraries

Called whenever the library’s settings are changed

		
stop_scan()

		Stops the library scan

		
thaw_libraries()

		Re-allow “libraries_modified” events from being sent from individual
add and remove library calls. Also sends a “libraries_modified”
event if the libraries have ben modified since the last call to
freeze_libraries.

		
unserialize_libraries(_serial_libraries)

		restores libraries from their serialized state.

Should only be called once, from the constructor.

		
class xl.collection.CollectionScanThread(collection, startup_scan=False)

		Scans the collection

Initializes the thread

		Parameters:		
		collection – the collection to scan

		startup_scan – Only scan libraries scanned at startup

		
on_scan_progress_update(type, collection, progress)

		Notifies about progress changes

		
run()

		Runs the thread

		
stop()

		Stops the thread

Libraries

		
class xl.collection.Library(location, monitored=False, scan_interval=0, startup_scan=False)

		Scans and watches a folder for tracks, and adds them to
a Collection.

Simple usage:

>>> from xl.collection import *
>>> c = Collection("TestCollection")
>>> l = Library("./tests/data")
>>> c.add_library(l)
>>> l.rescan()
True
>>> print c.get_libraries()[0].location
./tests/data
>>> print len(list(c.search('artist="TestArtist"')))
5
>>>

Sets up the Library

		Parameters:		
		location (string) – the directory this library will scan

		monitored (bool) – whether the library should update its
collection at changes within the library’s path

		scan_interval (int) – the interval for automatic rescanning

		
add(loc, move=False)

		Copies (or moves) a file into the library and adds it to the
collection

		
delete(loc)

		Deletes a file from the disk

Warning

This permanently deletes the file from the hard disk.

		
get_location()

		Gets the current location associated with this Library

		Returns:		the current location

		Return type:		string

		
get_monitored()

		Whether the library should be monitored for changes

		
get_rescan_interval()

		

		Returns:		the scan interval in seconds

		
rescan(notify_interval=None)

		Rescan the associated folder and add the contained files
to the Collection

		
set_location(location)

		Changes the location of this Library

		Parameters:		location (string) – the new location to use

		
set_monitored(monitored)

		Enables or disables monitoring of the library

		Parameters:		monitored (bool) – Whether to monitor the library

		
set_rescan_interval(interval)

		Sets the scan interval in seconds. If the interval is 0 seconds,
the scan interval is stopped

		Parameters:		interval (int) – scan interval in seconds

		
update_track(gloc)

		Rescan the track at a given location

		Parameters:		gloc (gio.File) – the location

returns: the Track object, None if it could not be updated

		
monitored

		Whether the library should be monitored for changes

		
class xl.collection.LibraryMonitor(library)

		Monitors library locations for changes

		Parameters:		library (Library) – the library to monitor

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/plus.png

xl/playlist.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Playlist

Provides the fundamental objects for handling a list of tracks contained
in playlists as well as methods to import and export from various file formats.

Playlists

		
class xl.playlist.Playlist(name, initial_tracks=[])

		Basic class for handling a list of tracks

		EVENTS: (all events are synchronous)

		
		
		playlist_tracks_added

		
		fired: after tracks are added

		data: list of tuples of (index, track)

		
		playlist_tracks_removed

		
		fired: after tracks are removed

		data: list of tuples of (index, track)

		playlist_current_position_changed

		playlist_shuffle_mode_changed

		playlist_random_mode_changed

		playlist_dynamic_mode_changed

		Parameters:		
		name (string) – the initial name of the playlist

		initial_tracks (list of xl.trax.Track) – the tracks which shall
populate the playlist initially

		
append(other)

		Appends a single track to the playlist

		Parameters:		other – list of xl.trax.Track

		
clear()

		Removes all contained tracks

		
clear_shuffle_history()

		Clear the history of played
tracks from a shuffle run

		
count(other)

		Returns the count of contained tracks

		Returns:		the count

		Return type:		int

		
extend(other)

		Extends the playlist by another playlist

		Parameters:		other – list of xl.trax.Track

		
get_current()

		Retrieves the track at the current position

		Returns:		the track

		Return type:		xl.trax.Track or None

		
get_current_position()

		Retrieves the current position within the playlist

		Returns:		the position

		Return type:		int

		
get_dynamic_mode()

		Retrieves the current dynamic mode

		Returns:		the dynamic mode

		Return type:		string

		
get_repeat_mode()

		Retrieves the current repeat mode

		Returns:		the repeat mode

		Return type:		string

		
get_shuffle_history()

		Retrieves the history of played
tracks from a shuffle run

		Returns:		the tracks

		Return type:		list

		
get_shuffle_mode()

		Retrieves the current shuffle mode

		Returns:		the shuffle mode

		Return type:		string

		
get_spat_position()

		Retrieves the current position within the playlist
after which progressing shall be stopped

		Returns:		the position

		Return type:		int

		
index(item, start=0, end=None)

		Retrieves the index of a track within the playlist

		Returns:		the index

		Return type:		int

		
load_from_location(location)

		Loads the content of the playlist from a given location

		Parameters:		location (string) – the location to load from

		
next()

		Progresses to the next track within the playlist
and takes shuffle and repeat modes into account

		Returns:		the new current track

		Return type:		xl.trax.Track or None

		
pop(i=-1)

		Pops a track from the playlist

		Parameters:		i (int) – the index

		Returns:		the track

		Return type:		xl.trax.Track

		
prev()

		Progresses to the previous track within the playlist
and takes shuffle and repeat modes into account

		Returns:		the new current track

		Return type:		xl.trax.Track or None

		
randomize(positions=None)

		Randomizes the content of the playlist contrary to
shuffle which affects only the progressing order

By default all tracks in the playlist are randomized,
but a list of positions can be passed. The tracks on
these positions will be randomized, all other tracks
will keep their positions.

		Parameters:		positions (iterable) – list of track positions to randomize

		
save_to_location(location)

		Writes the content of the playlist to a given location

		Parameters:		location (string) – the location to save to

		
set_current_position(position)

		Sets the current position within the playlist

		Parameters:		position (int) – the new position

		
set_dynamic_mode(mode)

		Sets the current dynamic mode

		Parameters:		mode (string) – the new dynamic mode

		
set_repeat_mode(mode)

		Sets the current repeat mode

		Parameters:		mode (string) – the new repeat mode

		
set_shuffle_mode(mode)

		Sets the current shuffle mode

		Parameters:		mode (string) – the new shuffle mode

		
set_spat_position(position)

		Sets the current position within the playlist
after which progressing shall be stopped

		Parameters:		position (int) – the new position

		
sort(tags, reverse=False)

		Sorts the content of the playlist

		Parameters:		
		tags (list of strings) – tags to sort by

		reverse (boolean) – whether the sorting shall be reversed

		
current_position

		The position within the playlist (int)

		
dirty

		Whether the playlist was changed or not (boolean)

		
dynamic_mode

		The current dynamic mode (string)

		
name

		The playlist name (string)

		
repeat_mode

		The current repeat mode (string)

		
shuffle_mode

		The current shuffle mode (string)

		
shuffle_mode_names = [u'Shuffle _Off', u'Shuffle _Tracks', u'Shuffle _Albums']

		Titles of the valid shuffle modes (list of string)

		
shuffle_modes = ['disabled', 'track', 'album']

		Valid shuffle modes (list of string)

		
spat_position

		The position within the playlist after which to stop progressing (int)

Playlist Converters

		
class xl.playlist.FormatConverter(name)

		Base class for all converters allowing to
import from and export to a specific format

		
export_to_file(playlist, path, options=None)

		Export a playlist to a given path

		Parameters:		
		playlist (Playlist) – the playlist

		path (string) – the target path

		options (PlaylistExportOptions) – exporting options

		
import_from_file(path)

		Import a playlist from a given path

		Parameters:		path (string) – the source path

		Returns:		the playlist

		Return type:		Playlist

		
name_from_path(path)

		Convenience method to retrieve a sane
name from a path

		Parameters:		path (string) – the source path

		Returns:		a name

		Return type:		string

		
class xl.playlist.M3UConverter

		Bases: xl.playlist.FormatConverter

Import from and export to M3U format

		
class xl.playlist.PLSConverter

		Bases: xl.playlist.FormatConverter

Import from and export to PLS format

		
class xl.playlist.ASXConverter

		Bases: xl.playlist.FormatConverter

Import from and export to ASX format

		
class xl.playlist.XSPFConverter

		Bases: xl.playlist.FormatConverter

Import from and export to XSPF format

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

xl/trax.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Trax

Provides the base for creating and managing Track objects.

Tracks

		
class xl.trax.Track(uri=None, scan=True, _unpickles=None)

		Represents a single track.

		Parameters:		
		uri – The path to the track.

		scan – Whether to try to read tags from the given uri.
Use only if the tags need to be set by a
different source.

		_unpickles – used internally to restore from a pickled
state. not for normal use.

		
exists()

		Returns whether the file exists
This can be very slow, use with caution!

		
get_loc_for_io()

		Gets the location as a full uri.

Safe for IO operations via gio, not suitable for display to users
as it may be in non-utf-8 encodings.

		
get_rating()

		Returns the current track rating as an integer, as
determined by the rating/maximum setting.

		
get_tag_display(tag, join=True, artist_compilations=False, extend_title=True)

		Get a tag value in a form suitable for display.

		Parameters:		
		tag – The name of the tag to get

		join – If True, joins lists of values into a
single value.

		artist_compilations – If True, automatically handle
albumartist and other compilations detections when
tag==”albumartist”.

		extend_title – If the title tag is unknown, try to
add some identifying information to it.

		
get_tag_raw(tag, join=False)

		Get the raw value of a tag. For non-internal tags, the
result will always be a list of unicode strings.

		Parameters:		
		tag – The name of the tag to get

		join – If True, joins lists of values into a
single value.

		
get_tag_sort(tag, join=True, artist_compilations=False, extend_title=True)

		Get a tag value in a form suitable for sorting.

		Parameters:		
		tag – The name of the tag to get

		join – If True, joins lists of values into a
single value.

		artist_compilations – If True, automatically handle
albumartist and other compilations detections when
tag==”albumartist”.

		extend_title – If the title tag is unknown, try to
add some identifying information to it.

		
get_type()

		Get the URI schema the file uses, e.g. file, http, smb.

		
list_tags()

		Returns a list of the names of all tags present in this Track.

		
local_file_name()

		If the file is accessible on the local filesystem, returns a
standard path to it (e.g. “/home/foo/bar”), otherwise,
returns None.

If a path is returned, it is safe to use for IO operations.
Existence of a path does not guarantee file existence.

		
read_tags()

		Reads tags from the file for this Track.

Returns False if unsuccessful, and a Format object from
xl.metadata otherwise.

		
set_loc(loc)

		Sets the location.

		Parameters:		loc – the location, as either a uri or a file path.

		
set_rating(rating)

		Sets the current track rating from an integer, on the
scale determined by the rating/maximum setting.

Returns the scaled rating

		
set_tag_raw(tag, values, notify_changed=True)

		Set the raw value of a tag.

		Parameters:		
		tag – The name of the tag to set.

		values – The value or values to set the tag to.

		notify_changed – whether to send a signal to let other
parts of Exaile know there has been an update. Only set
this to False if you know that no other parts of Exaile
need to be updated.

		
write_tags()

		Writes tags to the file for this Track.

Returns False if unsuccessful, and a Format object from
xl.metadata otherwise.

		
xl.trax.is_valid_track(location)

		Returns whether the file at the given location is a valid track

		Parameters:		location (string) – the location to check

		Returns:		whether the file is a valid track

		Return type:		boolean

		
xl.trax.get_uris_from_tracks(tracks)

		Returns all URIs for tracks

		Parameters:		tracks (list of xl.trax.Track) – the tracks to retrieve the URIs from

		Returns:		the uris

		Return type:		list of string

		
xl.trax.get_tracks_from_uri(uri)

		Returns all valid tracks located at uri

		Parameters:		uri (string) – the uri to retrieve the tracks from

		Returns:		the retrieved tracks

		Return type:		list of xl.trax.Track

		
xl.trax.sort_tracks(fields, iter, trackfunc=None, reverse=False, artist_compilations=False)

		Sorts tracks.

		Parameters:		
		fields (iterable) – tag names to sort by

		iter (iterable) – the tracks to sort,
alternatively use trackfunc

		trackfunc (function or None) – function to get a Track
from an item in the iterable

		reverse (boolean) – whether to sort in reversed order

		
xl.trax.sort_result_tracks(fields, trackiter, reverse=False, artist_compilations=False)

		Sorts SearchResultTracks, ie. the output from a search.

Same params as sort_tracks.

		
xl.trax.get_rating_from_tracks(tracks)

		Returns the common rating for all tracks or
simply 0 if not all tracks have the same
rating. Same goes if the amount of tracks
is 0 or more than the internal limit.

		Parameters:		tracks (iterable) – the tracks to retrieve the rating from

Track Database

Track databases are a simple persistence layer to hold collections of Track objects.

		
class xl.trax.TrackDB(name='', location='', pickle_attrs=, []loadfirst=False)

		Manages a track database.

Allows you to add, remove, retrieve, search, save and load
Track objects.

		Parameters:		
		name – The name of this TrackDB.

		location – Path to a file where this TrackDB
should be stored.

		pickle_attrs – A list of attributes to store in the
pickled representation of this object. All
attributes listed must be built-in types, with
one exception: If the object contains the phrase
‘tracks’ in its name it may be a list or dict
of Track objects.

		load_first – Set to True if this collection should be
loaded before any tracks are created.

Sets up the trackDB.

		
add(track)

		Adds a track to the database of tracks

		Parameters:		track – The xl.trax.Track to add

		
add_tracks(*__args, **__kw)

		Like add(), but takes a list of xl.trax.Track

		
load_from_location(*__args, **__kw)

		Restores TrackDB state from the pickled representation
stored at the specified location.

		Parameters:		location (string) – the location to load the data from

		
remove(track)

		Removes a track from the database

		Parameters:		track – the xl.trax.Track to remove

		
remove_tracks(*__args, **__kw)

		Like remove(), but takes a list of xl.trax.Track

		
save_to_location(*__args, **__kw)

		Saves a pickled representation of this TrackDB to the
specified location.

		Parameters:		location (string) – the location to save the data to

Searching

		
class xl.trax.TracksMatcher(search_string, case_sensitive=True, keyword_tags=None)

		Holds criteria and determines whether
a given track matches those criteria.

		Parameters:		
		search_string – a string describing the match conditions

		case_sensitive – whether to search in a case-sensitive
manner.

		keyword_tags – a list of tags to match search keywords
in.

		
xl.trax.search_tracks(trackiter, trackmatchers)

		Search a set of tracks for those that match specified conditions.

		Parameters:		
		trackiter – An iterable object returning Track objects

		trackmatchers – A list of TrackMatcher objects

		
xl.trax.search_tracks_from_string(trackiter, search_string, case_sensitive=True, keyword_tags=None)

		Convenience wrapper around search_tracks that builds matchers
automatically from the search string.

Arguments have the same meaning as the corresponding arguments on
on search_tracks and TracksMatcher.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

xl/metadata.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Metadata

		
xl.metadata.formats = {'669': <class 'xl.metadata.mod.ModFormat'>, 'xm': <class 'xl.metadata.mod.ModFormat'>, 'aiff': <class 'xl.metadata.wav.WavFormat'>, 's3m': <class 'xl.metadata.mod.ModFormat'>, 'mp4': <class 'xl.metadata.mp4.MP4Format'>, 'mp2': <class 'xl.metadata.mp3.MP3Format'>, 'mp3': <class 'xl.metadata.mp3.MP3Format'>, 'tta': <class 'xl.metadata.tta.TTAFormat'>, 'ape': <class 'xl.metadata.ape.MonkeysFormat'>, 'mka': <class 'xl.metadata.mka.MkaFormat'>, 'opus': None, 'wav': <class 'xl.metadata.wav.WavFormat'>, 'wma': <class 'xl.metadata.asf.AsfFormat'>, 'm4a': <class 'xl.metadata.mp4.MP4Format'>, 'mpc': <class 'xl.metadata.mpc.MpcFormat'>, 'far': <class 'xl.metadata.mod.ModFormat'>, 'amf': <class 'xl.metadata.mod.ModFormat'>, 'flac': <class 'xl.metadata.flac.FlacFormat'>, 'ogg': <class 'xl.metadata.ogg.OggFormat'>, 'oga': <class 'xl.metadata.ogg.OggFormat'>, 'mod': <class 'xl.metadata.mod.ModFormat'>, 'stm': <class 'xl.metadata.mod.ModFormat'>, 'ult': <class 'xl.metadata.mod.ModFormat'>, 'mtm': <class 'xl.metadata.mod.ModFormat'>, 'aif': <class 'xl.metadata.wav.WavFormat'>, 'shn': None, 'spx': <class 'xl.metadata.speex.SpeexFormat'>, 'ram': None, 'it': <class 'xl.metadata.mod.ModFormat'>, 'au': <class 'xl.metadata.wav.WavFormat'>, 'spc': None, 'okt': <class 'xl.metadata.mod.ModFormat'>, 'mid': None, 'ac3': None, 'dsm': <class 'xl.metadata.mod.ModFormat'>, 'ra': None, 'sid': <class 'xl.metadata.sid.SidFormat'>, 'med': <class 'xl.metadata.mod.ModFormat'>, 'snd': <class 'xl.metadata.wav.WavFormat'>, 'wv': <class 'xl.metadata.wv.WavpackFormat'>, 'asf': <class 'xl.metadata.asf.AsfFormat'>, 'midi': None, 'ogx': <class 'xl.metadata.ogg.OggFormat'>}

		dictionary mapping extensions to Format classes.

		
xl.metadata.get_format(loc)

		get a Format object appropriate for the file at loc.
if no suitable object can be found, None is returned.

		Parameters:		loc – The location to read from. can be any gio-parseable
path or uri.

Format Objects

		
exception xl.metadata.NotWritable

		

		
exception xl.metadata.NotReadable

		

		
class xl.metadata.BaseFormat(loc)

		Base class for handling loading of metadata from files.

subclasses using mutagen should set MutagenType and overload
the _get_tag, _set_tag, and _del_tag methods as needed.

subclasses not using mutagen should leave MutagenType as None

Raises NotReadable if the file cannot be
opened for some reason.

		Parameters:		loc – absolute path to the file to read
(note - this may change to accept gio uris in the future)

		
read_all()

		Reads all non-blacklisted tags from the file.

Blacklisted tags include lyrics, covers, and any field starting
with __. If you need to read these, call read_tags directly.

		
read_tags(tags)

		get the values for the specified tags.

returns a dict of the found values. if no value was found for a
requested tag it will not exist in the returned dict.

		Parameters:		tags – a list of tag names to read

		Returns:		a dictionary of tag/value pairs.

		
write_tags(tagdict)

		Write a set of tags to the file. Raises a NotWritable exception
if the format does not support writing tags.

		Parameters:		tagdict – A dictionary of tag/value pairs to write.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

xl/formatter.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Formatter

Provides an extensible framework for processing and
preparation of data for display in various contexts.

Formatters

		
class xl.formatter.Formatter(format)

		A generic text formatter based on a format string

By default the following parameters are provided
to each identifier:

		
		prefix, suffix: a string to put before or after the formatted string if that string is not empty

		
		Whitespace will be not be touched and transferred as is

		The characters ,, } and = need to be escaped like \,, \} and \= respectively

		pad: desired length the formatted string should have, will be achieved using the padstring

		
		padstring: a string to use for padding, will be repeated as often as possible to achieve the desired length specified by pad

		
		Example: ${identifier:pad=4, padstring=XY} for identifier having the value a will become XYXa

		Parameters:		format (string) – the initial format, see the documentation
of string.Template for details

		
extract()

		Retrieves the identifiers and their optional parameters

Example of the returned dictionary:

extractions = {
 'identifier1': (
 'identifier1', {}),
 'identifier2:parameter': (
 'identifier2', {'parameter': True}),
 'identifier3:parameter=argument': (
 'identifier3', {'parameter': 'argument'})
}

		Returns:		the extractions

		Return type:		dict

		
format(*args)

		Returns a string by formatting the passed data

		Parameters:		args – data to base the formatting on

		Returns:		the formatted text

		Return type:		string

		
class xl.formatter.ProgressTextFormatter(format, player)

		A text formatter for progress indicators

		
format(current_time=None, total_time=None)

		Returns a string suitable for progress indicators

		Parameters:		
		current_time (float) – the current progress, taken from the current playback if not set

		total_time (float) – the total length of a track, taken from the current playback if not set

		Returns:		The formatted text

		Return type:		string

		
class xl.formatter.TrackFormatter(format)

		A formatter for track data

		Parameters:		format (string) – the initial format, see the documentation
of string.Template for details

		
format(track, markup_escape=False)

		Returns a string for places where
track data is presented to the user

		Parameters:		
		track (xl.trax.Track) – a single track to take data from

		markup_escape (bool) – whether to escape markup-like
characters in tag values

		Returns:		the formatted text

		Return type:		string

		
class xl.formatter.TagFormatter(name)

		A formatter provider for a tag of a track

		Parameters:		name (string) – the name of the tag

		
format(track, parameters)

		Formats a raw tag value. Accepts optional
parameters to manipulate the formatting
process.

		Parameters:		
		track (xl.trax.Track) – the track to get the tag from

		parameters (dictionary) – optionally passed parameters

		Returns:		the formatted value

		Return type:		string

		
class xl.formatter.TrackNumberTagFormatter

		Bases: xl.formatter.NumberTagFormatter

A formatter for the tracknumber of a track

		
class xl.formatter.DiscNumberTagFormatter

		Bases: xl.formatter.NumberTagFormatter

A formatter for the discnumber of a track

		
class xl.formatter.ArtistTagFormatter

		Bases: xl.formatter.TagFormatter

A formatter for the artist of a track

		
format(track, parameters)

		Formats a raw tag value

		Parameters:		
		track (xl.trax.Track) – the track to get the tag from

		parameters – optionally passed parameters
Possible values are:

		compilate:
Allows for proper handling of compilations,
either via albumartist tag, a fallback value,
or simply all artists

		Returns:		the formatted value

		Return type:		string

		
class xl.formatter.LengthTagFormatter

		Bases: xl.formatter.TimeTagFormatter

A formatter for the length of a track

		
format(track, parameters)

		Formats a raw tag value

		Parameters:		
		track (xl.trax.Track) – the track to get the tag from

		parameters (dictionary) – Verbosity of the output,
possible values for “format” are:

		short: “1:02:42”

		long: “1h, 2m, 42s”

		verbose: “1 hour, 2 minutes, 42 seconds”

		Returns:		the formatted value

		Return type:		string

		
static format_value(value, format='short')

		Formats a length value

		Parameters:		
		value (float) – the length in seconds

		format (string) – verbosity of the output,
possible values are:

		short: “1:02:42”

		long: “1h, 2m, 42s”

		verbose: “1 hour, 2 minutes, 42 seconds”

		Returns:		the formatted value

		Return type:		string

		
class xl.formatter.RatingTagFormatter

		Bases: xl.formatter.TagFormatter

A formatter for the rating of a track

Will return glyphs representing the rating like ★★★☆☆

		
class xl.formatter.LastPlayedTagFormatter

		Bases: xl.formatter.DateTagFormatter

A formatter for the last time a track was played

Templates

		
class xl.formatter.ParameterTemplate(template)

		An extended template class which additionally
accepts parameters assigned to identifiers.

This introduces another pattern group named
“parameters” in addition to the groups
created by string.Template

Examples:

		${foo:parameter1}

		${bar:parameter1, parameter2}

		${qux:parameter1=argument1, parameter2}

		Parameters:		template – the template string

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/down.png

xl/covers.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Cover

Provides the base for obtaining and storing covers, also known
as album art.

Cover Manager

		
xl.covers.MANAGER = <xl.covers.CoverManager object at 0x7f1ec505b7d0>

		The singleton CoverManager instance

		
class xl.covers.CoverManager(location)

		Handles finding covers from various sources.

		Parameters:		location – The directory to load and store data in.

		
find_covers(*__args, **__kw)

		Find all covers for a track

		Parameters:		
		track – The track to find covers for

		limit – maximum number of covers to return. -1=unlimited.

		local_only – If True, will only return results from local
sources.

		
get_cover(track, save_cover=True, set_only=False, use_default=False)

		get the cover for a given track.
if the track has no set cover, backends are
searched until a cover is found or we run out of backends.

		Parameters:		
		track – the Track to get the cover for.

		save_cover – if True, a set_cover call will be made
to store the cover for later use.

		set_only – Only retrieve covers that have been set
in the db.

		use_default – If True, returns the default cover instead
of None when no covers are found.

		
get_cover_data(db_string, use_default=False)

		Get the raw image data for a cover.

		Parameters:		
		db_string – The db_string identifying the cover to get.

		use_default – If True, returns the default cover instead
of None when no covers are found.

		
get_db_string(track)

		Returns the internal string used to map the cover
to a track

		Parameters:		track (xl.trax.Track) – the track to retrieve the string for

		Returns:		the internal identifier string

		
get_default_cover()

		Get the raw image data for the cover to show if there is no
cover to display.

		
load()

		Load the saved db

		
remove_cover(track)

		Remove the saved cover entry for a track, if it exists.

		
save()

		Save the db

		
set_cover(track, db_string, data=None)

		Sets the cover for a track. This will overwrite any existing
entry.

		Parameters:		
		track – The track to set the cover for

		db_string – the string identifying the source of the
cover, in “method:key” format.

		data – The raw cover data to store for the track. Will
only be stored if the method has use_cache=True

		
set_preferred_order(order)

		Sets the preferred search order

		Parameters:		order – a list containing the order you’d like to search
first

Cover Search Methods

		
class xl.covers.CoverSearchMethod

		Base class for creating cover search methods.

Search methods do not have to inherit from this class, it’s
intended more as a template to demonstrate the needed interface.

		
find_covers(track, limit=-1)

		Find the covers for a given track.

		Parameters:		
		track – The track to find covers for.

		limit – Maximal number of covers to return.

		Returns:		A list of strings that can be passed to get_cover_data.

		
get_cover_data(db_string)

		Get the image data for a cover

		Parameters:		db_string – A method-dependent string that identifies the
cover to get.

		
fixed = False

		Whether the backend should have a fixed priority instead of being

		
fixed_priority = 50

		Priority for fixed-position backends. Lower is earlier, non-fixed

		
name = 'base'

		A name uniquely identifing the search method.

		
use_cache = True

		If true, cover results will be cached for faster lookup

		
class xl.covers.TagCoverFetcher

		Cover source that looks for images embedded in tags.

		
class xl.covers.LocalFileCoverFetcher

		Cover source that looks for images in the same directory as the
Track.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/comment-close.png

xl/player.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Player

Allows for playback and queue control

		
xl.player.PLAYER = None

		

The player singleton of ExailePlayer for playback control

		
ExailePlayer.play(track, **kwargs)

		Starts the playback with the provided track
or stops the playback it immediately if none

		Parameters:		track (xl.trax.Track) – the track to play

Note

The following events will be emitted by this method:

		playback_player_start: indicates the start of playback overall

		playback_track_start: indicates playback start of a track

		
ExailePlayer.stop(_fire=True, **kwargs)

		Stops the playback

		Parameters:		fire – Send the ‘playback_player_end’ event. Used by engines
to avoid spurious playback_end events. Not public API.

Note

The following events will be emitted by this method:

		playback_player_end: indicates the end of playback overall

		playback_track_end: indicates playback end of a track

		
ExailePlayer.pause()

		Pauses the playback, does not toggle it

Note

The following events will be emitted by this method:

		playback_player_pause: indicates that the playback has been paused

		
ExailePlayer.unpause()

		Resumes the playback, does not toggle it

Note

The following events will be emitted by this method:

		playback_player_resume: indicates that the playback has been resumed

		
ExailePlayer.toggle_pause()

		Toggles between playing and paused state

Note

The following events will be emitted by this method:

		playback_toggle_pause: indicates that the playback has been paused or resumed

		
ExailePlayer.seek(value)

		Seek to a position in the currently playing stream

		Parameters:		value (int) – the position in seconds

		
ExailePlayer.get_position()

		Gets the current playback position of the playing track

		Returns:		the playback position in nanoseconds

		Return type:		int

		
ExailePlayer.get_time()

		Gets the current playback time

		Returns:		the playback time in seconds

		Return type:		int

		
ExailePlayer.get_progress()

		Gets the current playback progress

		Returns:		the playback progress as [0..1]

		Return type:		float

		
ExailePlayer.set_progress(progress)

		Seeks to the progress position

		Parameters:		progress (float) – value ranged at [0..1]

		
ExailePlayer.get_volume()

		Gets the current volume

		Returns:		the volume percentage

		Type:		int

		
ExailePlayer.set_volume(volume)

		Sets the current volume

		Parameters:		volume (int) – the volume percentage

		
ExailePlayer.get_state()

		Gets the player state

		Returns:		one of playing, paused or stopped

		Return type:		string

		
ExailePlayer.is_playing()

		Convenience method to find out if the player is currently playing

		Returns:		whether the player is currently playing

		Return type:		bool

		
ExailePlayer.is_paused()

		Convenience method to find out if the player is currently paused

		Returns:		whether the player is currently paused

		Return type:		bool

		
ExailePlayer.is_stopped()

		Convenience method to find out if the player is currently stopped

		Returns:		whether the player is currently stopped

		Return type:		bool

		
xl.player.QUEUE = <xl.player.queue.PlayQueue object at 0x7f1ec48bfbd0>

		Manages the queue of songs to be played

The content of the queue are processed before processing
the content of the assigned playlist.

When the remove_item_when_played option is enabled, the queue
removes items from itself as they are played.

When not enabled, the queue acts like a regular playlist, and
moves the position as tracks are played.

In this mode, when a new track is queued, the position is set
to play that track, and play will continue with that track
until the queue is exhausted, and then the assigned playlist
will be continued.

The queue singleton of PlayQueue

		
class xl.player.queue.PlayQueue(player, name, location=None)

		Bases: xl.playlist.Playlist

Manages the queue of songs to be played

The content of the queue are processed before processing
the content of the assigned playlist.

When the remove_item_when_played option is enabled, the queue
removes items from itself as they are played.

When not enabled, the queue acts like a regular playlist, and
moves the position as tracks are played.

In this mode, when a new track is queued, the position is set
to play that track, and play will continue with that track
until the queue is exhausted, and then the assigned playlist
will be continued.

		
get_current()

		Gets the current track

		Returns:		the current track

		Type:		xl.trax.Track

		
get_next()

		Retrieves the next track that will be played. Does not
actually set the position. When you call next(), it should
return the same track.

This exists to support retrieving a track before it actually
needs to be played, such as for pre-buffering.

		Returns:		the next track to be played

		Return type:		xl.trax.Track or None

		
is_play_enabled()

		

		Returns:		True when calling play() will have no effect

		
next(autoplay=True, track=None)

		Goes to the next track, either in the queue, or in the current
playlist. If a track is passed in, that track is played

		Parameters:		
		autoplay (bool) – play the track in addition to returning it

		track (xl.trax.Track) – if passed, play this track

Note

The following events will be emitted by this method:

		playback_playlist_end: indicates that the end of the queue has been reached

		
play(track=None)

		Starts queue processing with the given
track preceding the queue content

		Parameters:		track (xl.trax.Track) – the track to play

		
prev()

		Goes to the previous track

		
queue_length()

		Returns the number of tracks left to play in the queue’s
internal playlist.

		
set_current_playlist(playlist)

		Sets the playlist to be processed in the queue

		Parameters:		playlist (xl.playlist.Playlist) – the playlist to process

Note

The following events will be emitted by this method:

		queue_current_playlist_changed: indicates that the queue playlist has been changed

		
current_playlist

		The playlist currently processed in the queue

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

dev/index.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Exaile Developer Documentation

		Contributing to Exaile

		Exaile plugin development guide
		Style

		Basic plugin structure

		Something (slightly) more useful

		Adding a track to the Playlist

		Adding another page to the left-hand Notebook

		Setting the cover art for a track

		Make strings translatable

		Saving/Loading arbitrary settings

		Searching the collection

		Exaile D-Bus

		Playback events

		Distributing the Plugin
		Create a Plugin Archive

		Exaile API
		Building your own version of this documentation

		Code guidelines
		Basic Style

		Documentation

		Events and Signals

		Managed object access

		GUI

		Logging

		Other

		Release process
		Step one: Translations

		Step two: Version bumping

		Step three: Linux + Windows

		Step four: OSX

		Step five: Upload everything to launchpad

		Step five: clean any relevant bug reports

		Step six: bump the version again

		Step seven: send release notices

		Debugging tips
		GST issues

Exaile API Docs

Core:

		Collection
		Collections

		Libraries

		Common utilities
		General functions

		Filesystem

		Decorators

		Classes

		Cover
		Cover Manager

		Cover Search Methods

		Events

		Formatter
		Formatters

		Templates

		Metadata
		Format Objects

		Player

		Playlist
		Playlists

		Playlist Converters

		Providers & Services

		Settings

		Trax
		Tracks

		Track Database

		Searching

		D-Bus
		org.exaile.Exaile Interface

GUI:

		Icons & Images
		Icon management

		Utilities

Index + search

		Module Index

		Search Page

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

xl/xldbus.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

D-Bus

D-Bus interface for playback control, data query and others

Access through the /org/exaile/Exaile object which
implements the org.exaile.Exaile interface

org.exaile.Exaile Interface

		
class xl.xldbus.DbusManager(exaile)

		The dbus interface object for Exaile

Initilializes the interface

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

dev/plugin_guide.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Exaile plugin development guide

Note

these instructions always track current Exaile trunk, and may not
be fully compatible with stable releases. It is recommended that
you develop plugins against trunk, so that you can submit patches
to trunk if need be during the creation of your plugin, and so
that your plugin can easily be merged into trunk when it is ready.

Style

If you plan to submit your plugin for inclusion in Exaile, please read and
follow the guidelines in the Code guidelines

Basic plugin structure

Plugins in Exaile 3.x+ are handled slightly differently than in the past.
Each plugin has its own directory in ~/.local/share/exaile/plugins/. In order
for your plugin to be recognized as valid by Exaile, it needs to have at least
two files in the plugin directory (~/.local/share/exaile/plugins/myplugin/):

		__init__.py

		PLUGININFO

The format of the PLUGININFO is as follows:

Version='0.0.1'
Authors=['Your Name <your@email.com>']
Name=_('Plugin Name')
Description=_('Something that describes your plugin. Also mention any extra dependencies.')
Category=_('Development')

The following two attributes are optional:

		Platforms - A list of the platforms your plugin works on. If you have no
specific requirements, omitting this argument or using an empty list is
fine. The values of the list are the sys.platform value.

		RequiredModules - If your plugin requires a module that may not be
present on all installations of exaile (eg, modules like gtk are
always going to be present, so don’t need to specify those), then you
should specify it here.

Note

Name and Description are what show up in the plugin manager.
Category is used to list your plugin alongside other plugins.
Platforms and RequiredModules are used to filter out the plugin
on inappropriate platforms.

Before Exaile 3.4, __init__.py was required to define at least two methods,
enable() and disable(). However, Exaile 3.4 introduced a new way to write
plugins which will eliminate a lot of unnecessary boilerplate for plugin
authors. We will use this model below:

class MyPlugin(object):

 def enable(self, exaile):
 print('You enabled me!')

 def disable(self, exaile):
 print('I am being disabled')

plugin_class = MyPlugin

For many types of plugins, this might be enough. However, there are other
optional methods you can define in your plugin object.

		on_gui_loaded - This will be called when the GUI is ready, or immediately
if already done

		on_exaile_loaded - This will be called when exaile has finished loading,
or immediately if already done

		teardown - This will be called when exaile is unloading

These methods may be necessary for your plugin because plugins can only
access Exaile’s infrastructure when Exaile itself finishes loading.
The first enable() method is called when Exaile is partway through
loading. But since we can’t do anything until Exaile finishes loading, we
can add on_exaile_loaded to our object that is called when Exaile finishes
loading. Some plugins need to modify state earlier in the startup process,
hence the need for this separation.

The exaile object in the above example is an instance of a class called
Exaile, which is defined in xl/main.py. This class is a base for everything
in the program.

You can get a handle on various objects in Exaile by looking at the members
of this class.

Something (slightly) more useful

Here is an example of a plugin that will, when a track is played, show the
track information in a MessageDialog. It demonstrates a callback on an event,
and getting the gtk.Window object of Exaile to use as a parent for a MessageBox.

The PLUGININFO is as follows:

Version='0.0.1'
Authors=['Me <me@internets.com>']
Name='Tutorial Plugin'
Description='Plugin to demonstrate how to make a plugin.'

and the __init__.py is as follows

'''
 This plugin will show an obnoxious gtk.MessageDialog that
 wont disappear, when a track is played. The MessageDialog
 will contain the information of the currently playing track.
'''

from xl import event
import gtk

The main functionality of each plugin is generally defined in a class
This is by convention, and also makes programming easier
class TutorialPlugin(object):

 def enable(self, exaile):
 '''This method is called when the plugin is loaded by exaile'''

 # We need a reference to the main Exaile object in order to set the
 # parent window for our obnoxious MessageDialog
 self.exaile = exaile

 def disable(self, exaile):
 '''This method is called when the plugin is disabled. Typically it is used for
 removing any GUI elements that we may have added in _enable()'''
 self.show_messagebox("Byebye!")

 def on_exaile_loaded(self):
 '''Called when exaile is ready for us to manipulate it'''

 #The reason why we dont use show_messagebox here is it hangs the GUI
 #which means it would hang Exaile as soon as you restart, because all
 #enabled plugins are loaded on start.
 print('You enabled the Tutorial plugin!')

 # Add a callback for the 'playback_track_start' event.
 # See xl/event.py for more details.
 event.add_callback(self.popup_message, 'playback_track_start')

 def popup_message(self, type, player, track):
 # The Track object (defined in xl/track.py) stores its data in lists
 # Convert the lists into strings for displaying
 title = track.get_tag_display('title')
 artist = track.get_tag_display('artist')
 album = track.get_tag_display('album')
 message = "Started playing %s by %s on %s" % (title, artist, album)
 self.show_messagebox(message)

 def show_messagebox(self, message):
 # This is the obnoxious MessageDialog. Due to (something to do with threading?)
 # it will steal, and never relinquish, focus when it is displayed.
 dialog = gtk.MessageDialog(self.exaile.gui.main.window, 0, gtk.MESSAGE_INFO, gtk.BUTTONS_OK, message)
 dialog.run()
 dialog.destroy()

plugin_class = TutorialPlugin

Have a look in the comments for an explanation of what everything is doing.

Adding a track to the Playlist

This is relatively simple. A Playlist consists of the actual graphical
representation of a playlist (see xlgui/playlist.py) and its underlying
Playlist object (see xl/playlist.py). Any changes made to the underlying
playlist object are shown in the graphical representation. We will be
appending Track objects to this underlying playlist.

First you need to get a handle on the underlying Playlist:

playlist_handle = exaile.gui.main.get_selected_playlist().playlist

Then, you need to create a Track object (defined in xl/track.py). The
method to do this from a local file versus a URL is slightly different.

For a local source:

from xl import trax
path = "/home/user/track.ogg" #basically, just specify an absolute path
myTrack = trax.Track(path)

For a url:

from xl import trax
url = "http://path/to/streaming/source"
myTrack = trax.get_tracks_from_uri(url)

You can set the track information like so:

myTrack.set_tag_raw('title', "Cool Track")
myTrack.set_tag_raw('artist', "Cool Artist")
myTrack.set_tag_raw('album', "Cool Album")

Once you have a Track object, and a handle on the Playlist you would like
to add the track to, you can proceed to add the track:

playlist_handle.add(myTrack)

Note that get_tracks_from_uri() returns a list, so you will need to use the
method for adding multiple tracks if your Track object was created this way.
You can also create your own list of Track objects and add them all in one
go like this too:

playlist_handle.add_tracks(myTrack)

This is pretty much all you need to do to add a track to the playlist. An
example in a plugin might be:

from xl import event, trax

class PlaylistExample(object):

 def enable(self, exaile):
 self.exaile = exaile

 def disable(self, exaile):
 pass

 def on_gui_loaded(self):
 self.playlist_handle = self.exaile.gui.main.get_selected_playlist().playlist

 local_tr = self.create_track_from_path('/home/user/track.ogg')
 remote_tr = self.create_track_from_url('http://site.com/track.ogg')
 self.add_single_to_playlist(local_tr)
 self.add_multiple_to_playlist(remote_tr)

 def create_track_from_path(self, path):
 return trax.Track(path)

 def create_track_from_url(self, url):
 return trax.get_tracks_from_uri(url)

 def add_single_to_playlist(self, track):
 self.playlist_handle.add(track)

 def add_multiple_to_playlist(self, tracks):
 self.playlist_handle.add_tracks(tracks)

plugin_class = PlaylistExample

You can do more things when adding a track than simply specifying a track
object to add, see the methods in the class Playlist (xl/playlist.py) for more
details.

Adding another page to the left-hand Notebook

This is done pretty easily. Basically, you need to subclass xlgui.panel.Panel
and register a provider advertising your panel.

The subclass needs to have two things:

		ui_info - This defines the location of the .glade file that will be loaded
into the notebook page (This file must be in Gtk.Builder format, not glade format)

		name - This is the name that will show on the notebook page, such as “MyPlugin”

from xl import providers
from xlgui import panel

Note: The following uses the exaile object from the enable() method. You
might want to call this from the on_gui_loaded function of your plugin.
page = MyPanel(exaile.gui.main.window)
providers.register('main-panel', page)

to remove later:
providers.unregister('main-panel', page)

class MyPanel(panel.Panel):

 #specifies the path to the gladefile (must be in Gtk.Builder format) and the name of the Root Element in the gladefile
 ui_info = (os.path.dirname(__file__) + "mypanel_gladefile.glade", 'NameOfRootElement')

 def __init__(self, parent):
 panel.Panel.__init__(self, parent)

 #This is the name that will show up on the tab in Exaile
 self.name = "MyPlugin"

 #typically here you'd set up your gui further, eg connect methods to signals etc

That’s pretty much all there is to it. To see an actual implementation,
have a look at xlgui/panel/collection.py or take a look at the Jamendo plugin.

Setting the cover art for a track

This is done by subclassing CoverSearchMethod and adding and instance of
the subclass the existing list. When Exaile plays a track with no cover,
it uses all the methods in its CoverSearchMethod list to try and find a cover.

A CoverSearchMethod must define:

		name - The name of the CoverSearchMethod, used for removing it from the list once its been added

		type - The type of the CoverSearchMethod (local, remote)

		find_covers(self, track, limit=-1) - This is the method that is called
by Exaile when it utilises the CoverSearchMethod. This method must return
an absolute path to the cover file on the users harddrive.

Here is an example CoverSearchMethod (taken from the Jamendo plugin). It
searches Jamendo for covers, downloads the cover to a local temp directory
and returns the path to the downloaded cover.

import urllib
import hashlib
from xl.cover import CoverSearchMethod, NoCoverFoundException

class JamendoCoverSearch(CoverSearchMethod):
 name = 'jamendo'
 type = 'remote'

 def __init__(self):
 CoverSearchMethod.__init__(self)

 def find_covers(self, track, limit=-1):
 jamendo_url = track.get_loc_for_io()

 cache_dir = self.manager.cache_dir
 if (not jamendo_url) or (not ('http://' and 'jamendo' in jamendo_url)):
 raise NoCoverFoundException

 #http://stream10.jamendo.com/stream/61541/ogg2/02%20-%20PieRreF%20-%20Hologram.ogg?u=0&h=f2b227d38d
 split=jamendo_url.split('/')
 track_num = split[4]
 image_url = jamapi.get_album_image_url_from_track(track_num)

 if not image_url:
 raise NoCoverFoundException

 local_name = hashlib.sha1(split[6]).hexdigest() + ".jpg"
 covername = os.path.join(cache_dir, local_name)
 urllib.urlretrieve(image_url, covername)

 return [covername]

You can then add it to the list of CoverSearchMethods for Exaile to try like so:

exaile.covers.add_search_method(JamendoCoverSearch())

And remove it like so:

exaile.covers.remove_search_method_by_name('jamendo')

Make strings translatable

Every message should be written in English and should be translatable. The
following example shows how you can make a string translatable:

from xl.nls import gettext as _
print _('translatable string')

Saving/Loading arbitrary settings

This is quite easy. It’s probably quicker to just show some code instead
of trying to explain it:

from xl import settings

#to save a setting:
setting_value = 'I am the value for this setting!'
settings.set_option('plugin/pluginname/settingname', setting_value)

#to get a setting
default_value = 'If the setting doesnt exist, I am the default value.'
retrieved_setting = settings.get_option('plugin/pluginname/settingname', default_value)

That’s all there is to it. There is a few restrictions as to the
datatypes you can save as settings, see xl/settings.py for more details.

Searching the collection

The following method returns an list of similiar tracks to the current
playing track:

exaile.dynamic.find_similar_tracks(exaile.player.current, 5) #the second optional argument is the limit

This method returns an list of tuples, which consist of the match rate and the artist’s name:

exaile.dynamic.find_similar_artists(exaile.player.current)

If you would like to search the collection for a specific artist, album or
genre, you can use the following code:

from xl.trax import search

artist = 'Oasis'
tracks = [x.track for x in search.search_tracks_from_string(
 exaile.collection, ('artist=="%s"'%artist))]

genre = 'pop'
tracks = [x.track for x in search.search_tracks_from_string(
 exaile.collection, ('genre=="%s"'%genre))]

album = 'Hefty Fine'
tracks = [x.track for x in search.search_tracks_from_string(
 exaile.collection, ('album=="%s"'%album))]

You can search the collection also for different assignments, like the last
played tracks, the most recently added tracks or the tracks, which were
played most often. Here you see an example to display the most recently
added tracks:

from xl.trax import search
from xl.trax.util import sort_tracks

tracks = [x.track for x in search.search_tracks_from_string(exaile.collection, ('! %s==__null__' % '__last_played'))]
tracks = sort_tracks(['__last_played'], tracks, True) #sort the tracks by the last playing

The other keywords are __date_added and __playcount

Exaile D-Bus

Here is a simple example how to use the D-Bus object:

#!/usr/bin/env python

import sys, dbus
import Image
from StringIO import StringIO

def test_dbus():
 bus = dbus.SessionBus()
 try:
 remote_object = bus.get_object("org.exaile.Exaile","/org/exaile/Exaile")
 iface = dbus.Interface(remote_object, "org.exaile.Exaile")
 if iface.IsPlaying():
 title = iface.GetTrackAttr("title")
 print 'Title: %s' % title
 album = iface.GetTrackAttr("album")
 print 'Album: %s' % album
 artist = iface.GetTrackAttr("artist")
 print 'Artist: %s' % artist
 genre = iface.GetTrackAttr("genre")
 print 'Genre: %s' % genre
 dbusArray = iface.GetCoverData()
 coverdata = "".join(chr(byte) for byte in dbusArray)
 if coverdata:
 im = Image.open(StringIO(coverdata))
 im.show()
 else:
 print "Exaile is not playing."
 except dbus.exceptions.DBusException:
 print "Exaile is not running."

if __name__ == "__main__":
 test_dbus()

Please check out xl/xldbus.py for further method signatures.

Playback events

Since playback events can occur far before the main GUI object or even the
exaile object is loaded, connecting to them in advance is required. To
do this, in your __init__ method:

event.add_callback(self.on_playback_player_start, 'playback_player_start')

Distributing the Plugin

Create a Plugin Archive

Basically, you just need to tar up your plugin’s directory, and rename the
tarfile to <name_of_plugin_directory>.exz

You will need to develop your plugin with a similar hierarchy to the following:

root --
 \ -- __init__.py
 \ -- PLUGININFO
 \ -- data
 \ -- somefile.glade
 \ -- somefile.dat
 \ -- images
 \ -- somefile.png

The archive should be named with the extension .exz. The name of the
plugin.exz file needs to match the name of the plugin directory.

So in the above example, you would need to call your plugin root.exz in
order for it to be accepted by Exaile.

exz files can optionally be compressed, using either gzip or bzip2. the
extension remains the same.

This is all you need to do to make a plugin archive.

Exaile API

Now you know the basics about programming plugins for Exaile, but there
are many more useful classes you may need. You can get an overview about
the classes and their use by going through the Exaile API Docs.

Building your own version of this documentation

In Ubuntu you have to install the package python-sphinx. Then you
can run the following command in a terminal:

$ cd doc && make html

You’ll find the documentation in doc/_build/html.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

xlgui/icons.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Icons & Images

Provides methods for convenient icons and image handling

Icon management

		
xlgui.icons.MANAGER

		Singleton instance of the IconManager

		
class xlgui.icons.IconManager

		Provides convenience functions for
managing icons and images in general

		
add_icon_name_from_directory(icon_name, directory)

		Registers an icon name from files found in a directory

		Parameters:		
		icon_name (string) – the name for the icon

		directory (string) – the location to search for icons

		
add_icon_name_from_file(icon_name, filename, size=None)

		Registers an icon name from a filename

		Parameters:		
		icon_name (string) – the name for the icon

		filename (string) – the filename of an image

		size (int) – the size the icon shall be registered for

		
add_icon_name_from_pixbuf(icon_name, pixbuf, size=None)

		Registers an icon name from a pixbuf

		Parameters:		
		icon_name (string) – the name for the icon

		pixbuf (gtk.gdk.Pixbuf) – the pixbuf of an image

		size (int) – the size the icon shall be registered for

		
add_stock_from_directory(stock_id, directory)

		Registers a stock icon from files found in a directory

		Parameters:		
		stock_id (string) – the stock id for the icon

		directory (string) – the location to search for icons

		
add_stock_from_file(stock_id, filename)

		Registers a stock icon from a filename

		Parameters:		
		stock_id (string) – the stock id for the icon

		filename (string) – the filename of an image

		
add_stock_from_files(stock_id, filenames)

		Registers a stock icon from filenames

		Parameters:		
		stock_id (string) – the stock id for the icon

		filenames (list of string) – the filenames of images

		
add_stock_from_pixbuf(stock_id, pixbuf)

		Registers a stock icon from a pixbuf

		Parameters:		
		stock_id (string) – the stock id for the icon

		pixbuf (gtk.gdk.Pixbuf) – the pixbuf of an image

		
add_stock_from_pixbufs(stock_id, pixbufs)

		Registers a stock icon from pixbufs

		Parameters:		
		stock_id (string) – the stock id for the icon

		pixbuf (list of gtk.gdk.Pixbuf) – the pixbufs of images

		
pixbuf_from_data(data, size=None, keep_ratio=True, upscale=False)

		Generates a pixbuf from arbitrary image data

		Parameters:		
		data (byte) – The raw image data

		size (tuple of int) – Size to scale to; if not specified,
the image will render to its native size

		keep_ratio (bool) – Whether to keep the original
image ratio on resizing operations

		upscale (bool) – Whether to upscale if the requested
size exceeds the native size

		Returns:		the generated pixbuf

		Return type:		gtk.gdk.Pixbuf or None

		
pixbuf_from_icon_name(icon_name, size=<class 'mocks.ICON_SIZE_BUTTON'>)

		Generates a pixbuf from an icon name

		Parameters:		
		stock_id (string) – an icon name

		size (int or GtkIconSize) – the size of the icon, will be
tried to converted to a GTK icon size

		Returns:		the generated pixbuf

		Return type:		gtk.gdk.Pixbuf or None

		
pixbuf_from_rating(*args, **kwargs)

		Returns a pixbuf representing a rating

		Parameters:		rating (int) – the rating

		Returns:		the rating pixbuf

		Return type:		gtk.gdk.Pixbuf

		
pixbuf_from_stock(stock_id, size=<class 'mocks.ICON_SIZE_BUTTON'>)

		Generates a pixbuf from a stock id

		Parameters:		
		stock_id (string) – a stock id

		size (GtkIconSize) – the size of the icon

		Returns:		the generated pixbuf

		Return type:		gtk.gdk.Pixbuf or None

		
pixbuf_from_text(text, size, background_color='#456eac', border_color='#000', text_color='#fff')

		Generates a pixbuf based on a text, width and height

		Parameters:		
		size (tuple of int) – A tuple describing width and height

		background_color (string) – The color of the background as
hexadecimal value

		border_color (string) – The color of the border as
hexadecimal value

		text_color (string) – The color of the text as
hexadecimal value

Utilities

		
class xlgui.icons.ExtendedPixbuf(pixbuf)

		A gtk.gdk.Pixbuf wrapper class allowing for
interaction using standard operators

Thus you can do the following:

		pixbuf1 + pixbuf2 (horizontally appends pixbuf2 to pixbuf1)

		pixbuf * 5 (multiplies the content of pixbuf)

		pixbuf1 & pixbuf2 (simple composition of pixbuf2 on pixbuf1, the desired alpha value has to be included in the pixbufs themselves)

		pixbuf1 < pixbuf2, pixbuf1 > pixbuf2 (compares the pixbuf dimensions)

		pixbuf1 == pixbuf2 (compares the pixel data, use the is operator to check for identity)

Even more is possible with the provided verbose methods

		
add_horizontal(other, spacing=0)

		Horizontally appends a pixbuf to the current

		Parameters:		
		other (gtk.gdk.Pixbuf) – the pixbuf to append

		spacing (int) – amount of pixels between the pixbufs

		Returns:		a new pixbuf

		Return type:		ExtendedPixbuf

		
add_vertical(other, spacing=0)

		Vertically appends a pixbuf to the current

		Parameters:		
		other (gtk.gdk.Pixbuf) – the pixbuf to append

		spacing (int) – amount of pixels between the pixbufs

		Returns:		a new pixbuf

		Return type:		ExtendedPixbuf

		
composite_simple(other)

		Composites a pixbuf on the current
pixbuf at the location (0, 0)

		Parameters:		other (gtk.gdk.Pixbuf) – the pixbuf to composite

		Returns:		a new pixbuf

		Return type:		ExtendedPixbuf

		
move(offset_x, offset_y, resize=False)

		Moves the content of the current pixbuf within
its boundaries (clips overlapping data) and
optionally resizes the pixbuf to contain the
movement

		Parameters:		
		offset_x (int) – the amount of pixels to move
in horizontal direction

		offset_y (int) – the amount of pixels to move
in vertical direction

		resize (bool) – whether to resize the pixbuf
on movement

		Returns:		a new pixbuf

		Return type:		ExtendedPixbuf

		
multiply_horizontal(multiplier, spacing=0)

		Horizontally multiplies the current pixbuf content

		Parameters:		
		multiplier (int) – How often the pixbuf
shall be multiplied

		spacing (int) – amount of pixels between the pixbufs

		Returns:		a new pixbuf

		Return type:		ExtendedPixbuf

		
multiply_vertical(multiplier, spacing=0)

		Vertically multiplies the current pixbuf content

		Parameters:		
		multiplier (int) – How often the pixbuf
shall be multiplied

		spacing (int) – amount of pixels between the pixbufs

		Returns:		a new pixbuf

		Return type:		ExtendedPixbuf

		
xlgui.icons.extended_pixbuf_new_from_file(filename)

		Returns a new ExtendedPixbuf containing
an image loaded from the specified file

		Parameters:		filename (string) – the name of the file
containing the image to load

		Returns:		a new pixbuf

		Return type:		ExtendedPixbuf

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

xl/common.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Common utilities

General functions and classes shared in the codebase

General functions

		
xl.common.log_exception(log=<logging.Logger object at 0x7f1ec5c73490>, message='Exception caught!')

		Convenience function to log an exception + traceback

		Parameters:		
		log – the logger object to use. important to specify
so that it will be logged under the right module name.

		message – a message describing the error condition.

		
xl.common.to_unicode(x, default_encoding=None)

		Force getting a unicode string from any object.

		
xl.common.order_poset(items)

		

		Parameters:		items (list of PosetItem) – poset to order

Filesystem

		
xl.common.open_file(path)

		Opens a file or folder using the system configured program

		
xl.common.open_file_directory(path)

		Opens the parent directory of a file, selecting the file if possible.

		
xl.common.walk(root)

		Walk through a Gio directory, yielding each file

Files are enumerated in the following order: first the
directory, then the files in that directory. Once one
directory’s files have all been listed, it moves on to
the next directory. Order of files within a directory
and order of directory traversal is not specified.

		Parameters:		root – a gio.File representing the
directory to walk through

		Returns:		a generator object

		Return type:		gio.File

		
xl.common.walk_directories(root)

		Walk through a Gio directory, yielding each subdirectory

		Parameters:		root – a gio.File representing the
directory to walk through

		Returns:		a generator object

		Return type:		gio.File

Decorators

		
xl.common.threaded(func)

		A decorator that will make any function run in a new thread

		Parameters:		func – the function to run threaded

		
xl.common.synchronized(func)

		A decorator to make a function synchronized - which means only one
thread is allowed to access it at a time.

This only works on class functions, and creates a variable in
the instance called _sync_lock.

If this function is used on multiple functions in an object, they
will be locked with respect to each other. The lock is re-entrant.

		
xl.common.profileit(func)

		Decorator to profile a function

		
xl.common.classproperty(function)

		Decorator allowing for class property access

		
xl.common.cached(limit)

		Decorator to make a function’s results cached
does not cache if there is an exception.

Note

This probably breaks on functions that modify their arguments

Classes

		
exception xl.common.VersionError(message)

		

		
class xl.common.LimitedCache(limit)

		Bases: UserDict.DictMixin

Simple cache that acts much like a dict, but has a maximum # of items

		
class xl.common.TimeSpan(span)

		Calculates the number of days, hours, minutes,
and seconds in a time span

		Parameters:		span (float) – Time span in seconds

		
days = 0

		number of days

		
hours = 0

		number of hours

		
minutes = 0

		number of minutes

		
seconds = 0

		number of seconds

		
class xl.common.MetadataList(iterable=, []metadata=[])

		Like a list, but also associates an object of metadata
with each entry.

(get|set|del)_meta_key are the metadata interface - they
allow the metadata to act much like a dictionary, with a few
optimizations.

		List aspects that are not supported:

		
		sort

		comparisons other than equality

		multiply

		
class xl.common.ProgressThread

		A basic thread with progress updates

		
run()

		Override and make sure that the ‘progress-update’
signal is emitted regularly with the progress

		
stop()

		Stops the thread

		
class xl.common.PosetItem(name, after, priority, value=None)

		

		Parameters:		
		name (string) – unique identifier for this item

		after (list of string) – which items this item comes after

		priority (int) – tiebreaker, higher values come later

		value – arbitrary data associated with the item

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

dev/code_guidelines.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Code guidelines

Page to hold style and practice guidelines for contributions to Exaile.
Patches to make the existing core codebase follow these guidelines are
always welcome and a good way to start learning about the internal
workings of Exaile.

Note that this document will generally reflect the ‘trunk’ version of
Exaile, and may not be fully applicable to stable releases. If in doubt,
ask!

Basic Style

		Use 4 spaces for indents, no tabs.

		Avoid lines >80 characters. Try to insert sensible line breaks to
accomplish this

		In general, PEP 8 applies: http://www.python.org/dev/peps/pep-0008/

		Keep imports on one line each to make sure imports cannot be missed:

Not recommended
import gobject, gtk, threading

Preferred
import gobject
import gtk
import threading

		The same goes for module imports, here parentheses can be used:

Not recommended
from threading import Event, Thread, Timer

Preferred
from threading import (
 Event,
 Thread,
 Timer
)

		Always write out variable names to keep them descriptive. Thus notebook_page is to
be preferred over nb.

		Exceptions:
		Names which are prone to spelling mistakes like miscellaneous and utilities. Here misc and util
are perfectly fine.

		If a very-long-named (like foooooo.bar_baz_biz_boz) variable
or function needs to be accessed by a large percentage of lines
in a small space, it may be shortened as long as 1) the name it
is shortened to is consistent across all uses of this shortcut,
and 2) the shortcut is limited in scope to just the area where
it is used repeatedly. If in doubt, do NOT use this exception.

		Try to group related methods within a class, this makes it easier to
debug. If it’s a particularly significant group of methods, mark them
with a triple-comment at the beginning and end, like so:

Methods for FOOBAR
more-detailed description (if needed)
def meth1(self):
 ...

End FOOBAR

		The closing triple-comment may be omitted if at the end of a class or
if another triple-comment starter comes after it.

		If you need a collection of constants for some purpose, it is
recommended to use the enum function from xl.common to construct one. The constant
type should be UpperCamelCase, the possible values UPPERCASE:

from xl.common import enum

ActionType = enum(ADD='add', EDIT='edit', ...)

...

if action.type == ActionType.EDIT:
 # ...

Documentation

		Always add docstrings to your public classes, methods and functions.

		Follow the Sphinx [http://sphinx.pocoo.org/] format for
documentation within docstrings.

Events and Signals

		Items internal to Exaile (ie. anything under xl/) should generally
prefer xl.event over gobject signals. Items that tie deeply into the (GTK) UI should
prefer gobject signals over xl.event.

		Keep in mind all events are synchronous - if your callback might take
a while, run it in a separate thread.

		
		
		Make sure that every access to GTK UI components is run in the
GTK main thread. Otherwise unpredictable issues can occur
including crashes due to cross-thread access.** This can be
accomplished by running the specific code through the
glib.idle_add [http://library.gnome.org/devel/pygobject/stable/glib-functions.html#function-glib–idle-add]
function. A typical mistake:

def __init__(self):
 """
 Set up a label in the GTK main thead and
 connect to the playback_track_start event
 """
 self.label = gtk.Label()
 event.add_callback(self.on_playback_track_start, 'playback_track_start')

def on_playback_track_start(event, player, track):
 """
 Serious problem: this event is run in a
 different thread, a crash is likely to occur
 """
 self.label.set_text(track.get_tag_display('title'))

		Event names should be all lower-case, using underscores to separate
words.

		Names should be prefixed by the general name indicating the
category or sender of the event. For example, events sent from
xl.player start with a playback_ prefix.

		The remainder of the name should indicate what action just
happened. eg. playback_player_pause.

		The data sent in an event should be whatever piece (or pieces) of
data are most relevant to the event. For example, if the event is
signaling that a state has changed, the new state should be sent,
or if the event indicates that an item was added, the new item
should be sent.

		Callbacks for gobject and xl.event should always be named “on_”
+ the name of the event. This avoids confusion and draws a line between
regular methods and signal/event callbacks.

		If you need to handle the same signal/event for multiple objects but
differently (as in: different callbacks), include the name of the
object in the callback name. Thus the event “clicked” for the
gtk.Button “play_button” would become “on_play_button_clicked”.
A small exception to this rule is when a word would be repeated.
Thus “on_play_button_press_event” should be preferred over
“on_play_button_button_press_event” for the “button-press-event”
signal of the button.

		If you use [[http://www.pygtk.org/docs/pygtk/class-gtkbuilder.html|gtk.Builder]]
for UI descriptions, apply the rules above, make the callbacks methods
of your class and simply call gtk.Builder.connect_signals(self)

Managed object access

		To keep classes interchangeable, try to make use of existing
signals/events wherever possible. Avoid reaching deeply into property
hierarchies under all circumstances. This is bound to break sooner
than later.

		If you need access to the main exaile object, call xl.main.exaile(), if you need
access to the main GUI object, call xlgui.get_controller(), for the main window xlgui.main.mainwindow()

		Many systems are already ported to singleton managers. Examples are xl.covers
and xlgui.icons. Simply use their MANAGER property to access them.

GUI

		Use .ui files to define most widgets - reduces code clutter. A lot of
basic structure can be easily prepared with the
Glade [http://glade.gnome.org/] interface designer, especially
objects where cell renderers and models are involved.

		Try to avoid dialogs, as they are intrusive and users generally don’t
read them anyway. Inline alternatives like
gtk.InfoBar [http://developer.gnome.org/pygtk/stable/class-gtkinfobar.html]
and its convenience wrapper xlgui.widgets.dialogs.MessageBar are much more effective.

Logging

		Messages should
		Be short but descriptive.

		Be proper English sentences, minus the period.

		Happen after the thing they are logging, UNLESS the thing might
take a while, in which case it may be printed before, with a
confirmation after the action completes.
		The tense of the message should match when it’s sent - if after
the action, use the past tense (“Logged into Audioscrobbler”),
if before, use the present(?) tense (“Logging into
audioscrobbler...”).

		Messages which are present tense may use an ellipsis (”...”) to
indicate the different state more clearly than by tense alone.

		Not be given prefixes to identify module, as –debug will
automatically add module names. It is acceptable to use related
names in the message to increase clarity however. For example,
“Logged into Audioscrobbler” is much clearer than “Logged in”, but
“Audioscrobbler: Logged in” is not acceptable.

		There are 4 standard logging levels built into Exaile, their names
and purpose are as follows:
		DEBUG - A significant internal event happened. Not shown by
default.

		INFO - A major but expected event happened.

		WARNING - Something suboptimal happened. Exaile will continue to
work properly but some features may be unavailable.

		ERROR - A critical error occurred. Exaile was unable to perform a
requested action and may be in an inconsistent state if the error
was not fully handled.

		When writing messages, please run both with and without –debug to
ensure it looks correct and does not duplicate the information
provided by any other message.

		Be sparing in the use of logging messages, particularly non-DEBUG
messages. Logging messages are not an alternative to inserting print
statements when debugging!

Other

		If you create a new on-disk format, add a version flag to it. This
makes forwards and backwards compatibility MUCH easier should the
format ever need to change.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

dev/release.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Release process

This is an attempt to document what needs to be done in order to create a
release for Exaile.

TODO: Update these instructions for github releases!

Step one: Translations

Merge the translations branch for the current series.

If a new series was created and no translations branch exists, follow
these steps:

		Create a new branch for translations, include the series in the branch
name, like “translations-3.4.x” for the “3.4.x” series

		Open the translation settings page of the series on Launchpad:
https://translations.launchpad.net/exaile/3.4.x/+translations-settings

		In “Import translations from branch” you should at least select
“Import template files” to have changes in code automatically show up
in the translation tool of Launchpad.

		In “Export translations to branch” you just “Choose a target branch”,
namely the one you just created.

You can reach the settings for all series via the general translations
page: https://translations.launchpad.net/exaile

Step two: Version bumping

First, adjust the version in your local working tree to reflect the version
you want to make a release for. We should never do releases with -dev in
them.

The file to adjust is xl/version.py. You should do a commit, and then tag
the release.:

$ git tag RELEASE_VERSION

Step three: Linux + Windows

The ‘make dist’ command will build both the source distribution and the
Windows version using NSIS running on Wine. You must install NSIS and the
inetc plugin.

		Install NSIS 2 (http://nsis.sourceforge.net/Main_Page)

		
		Install the inetc plugin (http://nsis.sourceforge.net/Inetc_plug-in)

		
		Unzip it to ~/.wine/drive_c/Program Files (x86)/NSIS

Once everything is installed, you can just run the following:

$ make dist

Step four: OSX

You need py2app installed to create an OSX dmg file. Once you have that
installed, then you can do the following:

$ cd tools/osx
$./create_dmg.sh

If everything succeeded, you should find a file called “exaile-VERSION.dmg” at
dist/exaile-VERSION.dmg.

Step five: Upload everything to launchpad

		Linux: exaile-VERSION.tar.gz + exaile-VERSION.tar.gz.asc

		Windows: exaile-VERSION.exe + exaile-VERSION.exe.asc

		OSX: exaile-VERSION.dmg + exaile-VERSION.dmg.asc

Step five: clean any relevant bug reports

Next, any bugs on launchpad for the release should be marked as ‘Fix released’. There is
an easy way to do this via email... TODO

Step six: bump the version again

The version in trunk should reflect the upcoming release with a -dev in it.

TODO: Except after a beta/RC? What’s the right transition?

Step seven: send release notices

		Update download links on exaile.org

		Add article to exaile.org

		Send email to mailing lists

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

dev/contributing.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Contributing to Exaile

The exaile team is always looking for others to help contribute to exaile
in various ways:

		Bugfixes

		Documentation updates

		Translations

		New features + plugins

The best way to contribute is to submit patches/etc via pull request on github.

If you think your bug report/request is being ignored, it probably isn’t. All
of the Exaile developers work on this project in their spare time, and so we
don’t always have time to work on your problems. We do try to push good
patches as soon as we can, however. Ping the bug report, or leave a message on
#exaile if we haven’t at least made an initial response, sometimes bug report
emails can get lost in the noise.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

dev/debugging_gst.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Debugging tips

TODO: developing with exaile

		
		Setup pydev properly

		
		Add glib, gtk,pygst,gst,gobject to builtins

		Add correct source directory

GST issues

When tracking down GST issues, a useful thing to do is the following:

$ GST_DEBUG=3 ./exaile
$ GST_DEBUG="cat:5;cat2:3" .. etc.

$ GST_DEBUG="GST_STATES:4" ./exaile

GST_DEBUG_NO_COLOR=1 is good if you’re running exaile inside of pydev on eclipse.

Additional help about GStreamer debugging variables can be found at
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/manual/html/section-checklist-debug.html

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

user/osx.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

OSX Notes

We’re excited to announce that Exaile has experimental yet official support
for OSX as of version 3.4.0, and is distributed in an official installer
program. Current support for OSX is still considered experimental, and
probably will continue to be until we migrate to GTK3.

Exaile has only been tested extensively on OSX 10.8 Mountain Lion. It may
work on other versions of OSX, but they have not been tested.

Requirements

On OSX, Exaile requires the GStreamer SDK Runtime to be installed, otherwise
it will not function.

Download the SDK runtime for OSX here:

http://docs.gstreamer.com/display/GstSDK/Installing+on+Mac+OS+X

Or use this direct download link:

http://cdn.gstreamer.com/osx/universal/gstreamer-sdk-2013.6-universal.pkg

The default installation will allow the Exaile UI to work correctly, and
should support playing many types of audio formats.

Install process

First, make sure that you have installed the GStreamer SDK.

Next, install Exaile like you would install any other OSX application.

		Open the DMG file

		Drag the Exaile application to the “Applications” folder

MP3 support

By default GStreamer SDK does not install support for MP3 files or certain
other formats because of licensing issues. If you require support for these
types of files, use the following procedure when installing GStreamer SDK.

		Run the GStreamer installation package

		Click continue

		Click “Agree” to agree to the license agreement

		Click “Install for all users of this computer”, and click “Continue”

		Click “Customize”

		
		Ensure the following package names are checked in addition to the defaults:

		
		GStreamer codecs under the GPL license

		GStreamer restricted codecs

		GStreamer plugins for network protocols

		Click Install, and it should do the install for you

Known issues

The OSX version is about as functional as the Windows version, so most things
will work without any problems. The CD plugin and other device plugins will
not work on OSX.

Transparency may not work.

Keyboard shortcuts aren’t mapped to the option/command keys, and are still
mapped to CTRL.

GTK2 seems to have a lot of odd problems on OSX, such as combo boxes immediately
switching when clicked. We anticipate that these will not be fixed until we
migrate exaile to GTK3.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

user/deps.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Installation dependencies

The official installers for Windows and OSX should already come with/install
the necessary dependencies for base functionality to work.

Note

Plugin dependencies should be listed in their description

Dependencies

Essential:

		python (>= 2.6)

		pygst 0.10

		gstreamer-plugins-good 0.10

		mutagen (>= 1.10)

		dbus-python

		pygtk (>= 2.17)

		pygobject (>= 2.18, built with gio support)

Translation:

		gettext

Documentation:

		sphinx

		help2man

Device detection (one of the following):

		hal

		udisks

		udisks2

CD info:

		python-cddb

Scalable icons:

		librsvg2

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

user/index.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Exaile Users Guide

The great thing about Exaile is that it’s really simple to use, so we
haven’t written instructions on how to use it! ;)

		Installation dependencies
		Dependencies

		Installation
		Windows

		Install on OSX

		Linux/*nix
		Environment Variables

		Windows Notes
		Running Exaile

		Exaile DirectSound plugin (libgstexailedirectsoundsink.dll)

		GStreamer.com SDK bugs

		Possible Errors and Solutions

		Bug Reporting

		OSX Notes
		Requirements

		Install process

		MP3 support

		Known issues

Support

If you believe you have found a bug, you can file bugs at
Exaile’s github issue tracker [https://github.com/exaile-dev/exaile/issues]
You will need to register for a github account before you can post a bug
report.

The following are ways you can get support or questions to answers you
might have about using or developing Exaile.

Mailing lists

We run mailing lists for various purposes.

		exaile-users [http://groups.google.com/group/exaile-users] - A
list for people who use Exaile. Open to discussion between users to
communicate and help each other. If you’re having trouble using Exaile,
ask here.

		exaile-devel [http://groups.google.com/group/exaile-devel] - Our
primary list for general development discussion. Questions about the code,
plugin development, packaging, etc. should go here.

IRC

Exaile developers can be reached on #exaile channel on
Freenode [http://freenode.net/irc_servers.shtml]. The channel is not
very active, but if you stick around long enough someone will probably
answer your question – think in terms of email response time)

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

user/win32.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Windows Notes

We’re excited to announce that Exaile has official support for Windows
platforms as of version 3.3.0, and is distributed in an official installer
program.

Exaile (and its installer) has been tested on:

Windows XP SP3
Windows 7 x64 SP1
Windows 8.1

Python 2.7.8 (32-bit and 64-bit)
GStreamer.com SDK 2013.6 (32-bit and 64-bit)

Exaile may work with the OSSBuild SDK and Python 2.6.6, but this is not
a recommended configuration.

Running Exaile

If you installed exaile using the Windows installer, you can find icons to
launch Exaile in the Start Menu under “All Programs” -> “Exaile”.

Alternatively, you can directly launch “exaile_win.py”.

Exaile DirectSound plugin (libgstexailedirectsoundsink.dll)

Exaile currently includes a custom DirectSound GST plugin that is compiled
against the GStreamer.com SDK git repository as of September 2012.

The reason a custom plugin is included with Exaile is because GST mainline
does not currently support selecting the audio output for the DirectSound
plugin. Another project created a patch to add this functionality, and
you can find the bug at https://bugzilla.gnome.org/show_bug.cgi?id=584980

The plugin is LGPL, and our modifications to the GST source are in
toolswin-installerdirectsound.patch

If you do not wish to use the Exaile directsound plugin, you can change
the audiosink in Preferences->Playback

GStreamer.com SDK bugs

2012.9:

“libssp-0.dll is missing”

GStreamer.com SDK 2012.9 was not packaged properly, and is missing a file
that comes with MinGW. Obtain the file from somewhere, and place it in the
bin directory of your gstreamer.com SDK

See https://bugs.freedesktop.org/show_bug.cgi?id=54710

An x86 version of this file is distributed with Exaile in the directory
toolswin-installer, and should be installed automatically by the Exaile
installer. If it was not installed for you, please file a bug with Exaile.

2012.7:

2012.7 does not have complete python bindings shipped with it, and is
missing libpyglib-2.0-python.pyd . You can download it at
https://bugs.freedesktop.org/show_bug.cgi?id=52983

Possible Errors and Solutions

The GStreamer.com SDK environment is a bit fragile and can sometimes cause
mysterious problems when launching exaile. Some of the known issues that have
been reported are below:

“ImportError: could not import gobject (error was: ‘DLL load failed: The
specified module could not be found.’)”

This has been observed when there are multiple versions of Glib/GTK on your
system. Possible problems may include:

		You have a GTK living somewhere else that isn’t compatible with the
GStreamer.com SDK. This happens if you have GStreamer SDK and PyGTK
installed on the same machine.

		You may have MinGW installed somewhere else with older DLLs that are not
compatible with the GStreamer.com SDK

What you can do to diagnose the problem:

		Get depends.exe: http://www.dependencywalker.com/

		Modify exaile.bat to launch depends instead of exaile (that way the
environment is identical)

		Load %GSTREAMER_SDK_ROOT_X86%libpython2.7site-packagesgst-0.10gst_gst.pyd
in depends.exe (the pyd file is really a DLL), and see what errors it
reports. This should be able to tell you what DLL is conflicting, and what
its path is

Bug Reporting

If exaile crashes, you should be able to find a logfile from the last time
exaile was launched in the following directories:

Windows XP: %USERPROFILE%\Local Settings\Application Data\exaile\logs
Windows 7+: %USERPROFILE%\AppData\Local\exaile\logs

If you run into any bugs not mentioned in this document, please report them
to us via github at https://github.com/exaile-dev/exaile/issues . Please include any
relevant logfile snippets.

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

user/install.html

 Navigation

 		
 index

 		
 modules |

 		Exaile 3.4.1 documentation »

Installation

Windows

On Windows, using the official Windows installation program is recommended.
If you want to build your own installer, see Step three: Linux + Windows.

Install on OSX

On OSX, using the official OSX installation DMG is recommended. See
OSX Notes

If you want to build your own installer, see Step four: OSX.

Linux/*nix

On *nix-based systems (but not OSX), run the following to install:

$ make
make install

The “make” step is optional and only compiles the modules and translations.

There is also an install_no_locale target if you wish to install without
translations.

Environment Variables

Environment variables that affect “make install”:

		LIBINSTALLDIR

		The lib directory to be appended to PREFIX.
Default: /lib

		PREFIX

		The installation prefix.
Default: /usr/local
Note: If this default is changed, you may need to set the XDG_DATA_DIRS

environment variable to include the changed path. See [1].

		XDGCONFDIR

		The directory to install system-wide config files in, following xdg spec.
Default: /etc/xdg
Note: If this default is changed, you may need to set the XDG_CONFIG_DIRS

environment variable to include the changed path. See [1].

		DESTDIR

		
		Destination directory to put the file structure under. Mainly of use for

		packagers.

Default: not set (/)

		DEFAULTARGS

		Default arguments that the ‘exaile’ launcher script (installed to
$PREFIX/bin/exaile) will pass to exaile on startup

Additional Resources:
[1] - XDG Base Directory Specification

http://standards.freedesktop.org/basedir-spec/basedir-spec-0.6.html

 © Copyright 2009-2014 Exaile Development Team.
 Created using Sphinx 1.2.2.

